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Finite element approximation to a finite-size modified

Poisson-Boltzmann equation

Jehanzeb Hameed Chaudhry ∗ Stephen D. Bond † Luke N. Olson ‡

Abstract

The inclusion of steric effects is important when determining the electrostatic potential near
a solute surface. We consider a modified form of the Poisson-Boltzmann equation, often called
the Poisson-Bikerman equation, in order to model these effects. The modifications lead to
bounded ionic concentration profiles and are consistent with the Poisson-Boltzmann equation in
the limit of zero-size ions. Moreover, the modified equation fits well into existing finite element
frameworks for the Poisson-Boltzmann equation. In this paper, we advocate a wider use of the
modified equation and establish well-posedness of the weak problem along with convergence of
an associated finite element formulation. We also examine several practical considerations such
as conditioning of the linearized form of the nonlinear modified Poisson-Boltzmann equation,
implications in numerical evaluation of the modified form, and utility of the modified equation
in the context of the classical Poisson-Boltzmann equation.

Keywords: Finite elements, Poisson-Boltzmann, Poisson-Bikerman

1 Introduction

Electrostatic interactions play a critical role in determining macroscopic properties of biomolec-

ular systems, such as solvation free energy and binding affinities [1–3]. The Poisson-Boltzmann

equation (PBE), introduced decades ago [4, 5], has proved successful in approximating electrostatic

interactions for moderate surface charge densities. The PBE adopts a continuum mean-field descrip-

tion of a solvent, assuming point-like ions in thermodynamic equilibrium, and neglecting statistical

correlations [6]. However, the assumption of zero-size ions in this description leads to unphysical

concentrations near the surface under moderate charge densities, even if the bulk solution is dilute [7].
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Chaudhry, Bond, Olson

One approach to modeling the effects of finite-size ions is to consider a lattice gas model for

the free ions [7], which leads to the modified PBE (MPBE). Also termed the Poisson-Bikerman

equation [8, 9], the MPBE has the advantage of bounded concentrations of ions near the molecular

surface. As the size of the ions tend toward zero, the modified equation converges to the PBE.

The value of incorporating steric effects into the equation is highlighted through several recent

applications that have adopted the MPBE [7,8, 10,11].

In addition to the MPBE, there have been other attempts to modify the Poisson-Boltzmann

theory in an effort to account for steric effects. For example, through a series of modified equa-

tions [12], a new model has been derived [13], which takes into account volume-exclusion effects of

free ions. In another model based on density functional theory [14], in addition to the ion-exclusion

effects, solvent exclusion effects are approximated by modeling solvent molecules as neutral, hard

spheres. While effective, these alternate approaches involve non-trivial equations, and considerable

computational effort is required to solve them. One advantage of the MPBE proposed by [7], and

considered here, is in the simplicity and ease with which it can be incorporated with existing PBE

numerical implementations.

The finite element method has been widely used for solving the PBE [15–23]. In this paper we

analyze the MPBE. We start by analytically subtracting the singularities in the potential through a

common regularization procedure [15,24] and follow by proving the existence and uniqueness of weak

solutions to the regularized MPBE. We then examine the finite-element formulation for this equation

and show that the corresponding approximation converges as the mesh is refined. As a practical

consideration, we also examine the conditioning of linear systems which arise during discretization.

Finally, we discuss a method for solving the unmodified PBE by first solving the modified equation

to improve the initial guess. We argue that this approach is vital for fast convergence of Newton-like

methods.

The unmodified PBE has been analyzed by Chen, Holst, and Xu [15]. Although our analysis

of the modified PBE uses a similar approach, there are important differences. In particular, the

nonlinearity in the modified equation is bounded, which simplifies the theory. When applicable, we

use prior results for the unmodified PBE to contribute to our theory and discussion.

A slightly different form of the modified Poisson-Boltzmann equation has been analyzed by

Li [25]. The focus is on deriving the equation from a free energy function, from properties of

equilibrium concentrations, and by rigorously proving equivalence of different forms of the equation.

2
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Finite Element Method for the MPBE

In this paper, we approach existence and uniqueness of solution differently, using results from convex

optimization. Moreover, our results focus on discrete solutions to the problem.

The remainder of the paper is organized as follows. In Section 2 we describe the MPBE, its

domain, and different transformations to make it amenable for numerical computations. In Section 3

we prove the existence of a unique weak solution to the regularized problem. We give a finite-

element formulation for regularized MPBE in Section 4 and show optimality and convergence of the

approximations. Finally, in Section 5, we discuss a relationship between the PBE and the MPBE as

ion size is decreased in the MPBE.

2 The Modified Poisson Boltzmann Equation

Biomolecular systems are frequently modeled through classical molecular dynamics, where the dy-

namics of the atoms in the system are resolved, and thermodynamic properties are estimated by

averaging in time [26]. Due to the large number of solvent molecules, and the small timesteps required

in the simulation, explicit methods based on molecular dynamics are extremely expensive [27, 28].

A more tractable approach is to represent the solvent implicitly as a dielectric continuum, which

results in the Poisson-Boltzmann model. Let φ(x) represent the unknown electrostatic potential,

ε(x) the dielectric coefficient, and κ̄(x) the modified Debye-Hückel parameter. Defining constant

β = 1/(kBT ), kB as the Boltzmann constant, ec as the charge of an electron, and T as the temper-

ature, the Poisson-Boltzmann equation for 1:1 solution (one positive and one negative ion per salt

molecule, e.g. NaCl) is,

−∇ · (ε(x)∇φ(x)) +
1

βec
κ̄2(x) sinh(βecφ(x)) = 4π

Nm∑
i=1

Qiδ(x− xi) in R3,

φ(∞) = 0.

Here, the solute contains Nm fixed points with charges Qi at positions xi, and δ represents the Dirac

delta distribution.

The domain for the problem is R3 which is subdivided into a molecular region Ωm, a solvent

region Ω∞s , and an interface between the two denoted by Γ. The solute is surrounded by solvent,

which is represented as a continuum over the subdomain Ω∞s = R3\Ωm. The subdomains for a

3
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Chaudhry, Bond, Olson

typical biomolecular solute are shown on the left in Figure 1.

Figure 1: Subdomains for the Poisson-Boltzmann equation
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Let εm and εs be positive constants, and NA represent Avogadro’s number. The dielectric

coefficient, ε(x), and modified Debye-Hückel parameter, κ̄2(x), are piecewise constant functions

given by

ε(x) =


εm, x ∈ Ωm,

εs, x ∈ Ω∞s ,

and κ̄2(x) =


0, x ∈ Ωm,

κ̄2
s = εs

8πNAe2
c

1000kBT cb, x ∈ Ω∞s .

(1)

In the MPBE, the free ions occupy cells in a three-dimensional lattice of size a, as shown on the

right in Figure 1. Let a be the diameter of an ion and cb be the bulk concentration or ionic strength

(which depends on the particular solvent being modeled). Defining ν = 2a3cb, the modified PBE

for a 1:1 solution, obtained from [7] (with a straightforward extension to account for the molecular

region as is done for unmodified PBE in such cases) is,

−∇ · (ε(x)∇φ(x)) +
1

βec
κ̄2(x)

sinh(βecφ(x))
1− ν + ν cosh(βecφ(x))

= 4π

Nm∑
i=1

Qiδ(x− xi), in R3

φ(∞) = 0.

For the remainder of this paper, we assume that 0 < ν < 1, unless stated otherwise. Notice that as

a → 0 we recover the PBE.

The assumption of zero-size ions in the unmodified PBE leads to unphysical concentrations near

the surface. This is illustrated in Figure 2 for the Born ion (described in Section 4.2), which shows

counter-ion concentrations calculated using our finite-element formulation with a free ion size of 5

4
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Finite Element Method for the MPBE

Å and bulk concentration of 0.1M. The PBE results in high concentrations of counter-ions near the

surface of the molecule, whereas the MPBE yields a realistically bounded profile.

Distance from interface (   )

C
o
n

c
e
n

tr
a
ti

o
n

  
(M

)

Figure 2: Concentration profile near the Born ion interface

Truncation

For computation, the unbounded solvent domain, Ω∞s , is truncated to a bounded domain, Ωs, and

the resulting problem domain, Ω = Ωs ∪ Γ ∪ Ωm, has a convex and Lipschitz-continuous boundary

∂Ω. Dirichlet boundary conditions are imposed to capture the asymptotic behavior of the solution

on an unbounded domain. Together with a change of variables, ũ(x) = βecφ(x), this results in a

dimensionless modified Poisson-Boltzmann equation on Ω:

−∇ · (ε(x)∇ũ(x)) + κ̄2(x)
sinh(ũ(x))

1− ν + ν cosh(ũ(x))
= 4πβec

Nm∑
i=1

Qiδ(x− xi) in Ω, (2)

ũ(x) = g(x) on ∂Ω. (3)

The boundary conditions are prescribed using a linear combination of Helmholtz Green’s func-

tions,

g(x) = βec

m∑
i=1

Qi

εs|x− xi|
exp

(
−κ̄s|x− xi|√

εs

)
, (4)

5
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Chaudhry, Bond, Olson

which captures the asymptotic behavior of the solution. This boundary condition is the same as

boundary conditions commonly used for the PBE [15] and can be derived from the asymptotic

properties of (2).

Similar to the unmodified case, the solution to the modified PBE must satisfy two conditions at

the interface Γ,

Jũ(x)KΓ = 0 and
s
ε(x)

∂ũ(x)
∂n

{

Γ

= 0, x ∈ Γ, (5)

where n is the unit normal at the interface and the jump at the interface is defined as

Jv(x)KΓ = lim
α→0+

v(x + αn)− v(x− αn).

Regularization

Equation (2) resembles a standard second order elliptic partial differential equation, but the right

hand side contains delta distributions which are not in H−1(Ω) — i.e., the dual space of H1
0 (Ω)

(see [15]). This precludes seeking a solution in H1(Ω), the typical Sobolev space for second order

equations. The lack of smoothness of the solution ũ also hinders the design of a convergent finite

element method for the MPBE. Following [24], we overcome this issue by decomposing ũ into

ũ = u + uc, (6)

where u is an unknown smooth function and uc is a known singular function which absorbs the

singularities in ũ. The Coulomb function, uc, satisfies the Poisson equation

−εm∇ · ∇uc(x) = 4πecβ

m∑
i=1

Qiδ(x− xi). (7)

Combining (6) with (2), we obtain the regularized MPBE or RMPBE:

−∇ · (ε(x)∇u(x)) + κ̄2(x)
sinh(u(x) + uc(x))

1− ν + ν cosh(u(x) + uc(x))
= ∇ · ((ε(x)− εm)∇uc(x)) in Ω, (8)

u(x) = g(x)− uc(x) on ∂Ω. (9)

6
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Finite Element Method for the MPBE

3 Existence and Uniqueness

In this section we establish the existence and uniqueness of the weak solution to the RMPBE.

Although our approach is similar to the approach used by Chen, Holst, and Xu [15] to analyze the

unmodified RPBE, the assumptions differ and we are able to make several simplifications to make

the theory more accessible. In particular, we do not need an L∞ bound since the nonlinearity in

the modified equation is bounded.

We denote the L2(Ω) inner product by ( . , . ) and the duality pairing between functions from

H1
0 (Ω) and H−1(Ω) by 〈 . , . 〉. Define

M := {v ∈ H1(Ω)|v = g − uc on ∂Ω} (10)

and V = H1
0 (Ω). The weak problem for (8) becomes: Find u ∈ M such that

A(u, v) + (N(u), v) + 〈fc, v〉 = 0, ∀v ∈ V, (11)

where

A(u, v) = (ε∇u,∇v),

(N(u), v) = (κ̄2 sinh(u + uc)
1− ν + ν cosh(u + uc)

, v), and

〈fc, v〉 =
∫

Ω

(ε− εm)∇uc · ∇v dx.

For equation (11) to be well defined, we need N(u) ∈ L2(Ω). This is true since N(u) ∈ L∞(Ω),

which follows from the bound

sinh(u + uc)
1− ν + ν cosh(u + uc)

≤ 1
ν

in Ω. (12)

We seek an energy functional on M with a minimum that satisfies (11). Define E as

E(w) =
∫

Ω

ε

2
∇w · ∇w +

κ̄2

ν
ln(1− ν + ν cosh(w + uc)) dx + 〈fc, w〉.

The motivation for choosing this energy is given by the following lemma, which shows that the

7
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Chaudhry, Bond, Olson

solution to the RMPBE is the minimizer of this energy.

Lemma 3.1. If u is the solution of the optimization problem, i.e.

E(u) = inf
w∈M

E(w), (13)

then u is the solution of (11).

Proof. Similar to the proof of Lemma (4.1) in [15], we consider the function F : R → R given by

F (τ) = E(u + τv),

for any v ∈ H1
0 (Ω). Taking the derivative of this function at its critical point (τ = 0) proves the

assertion.

With a suitable energy function defined, the following theorem guarantees the existence and

uniqueness of the solution to the minimization problem (13).

Theorem 3.2 (Existence and Uniqueness). There exists a unique u ∈ M ⊂ H1(Ω) such that

E(u) = inf
w∈M

E(w).

To prove this theorem we make use of results from variational analysis. The requisite defi-

nitions and theorems that we use are now given. Let f : V → R be a functional on a separa-

ble reflexive Banach space V with norm ‖.‖. We denote convergence in norm by → and weak

convergence by ⇀. Additionally, recall that a functional f is lower semi-continuous at v ∈ V

if f(v) ≤ lim infn→∞ f(vn) for any sequence {vn} such that vn → v and is weakly lower semi-

continuous at v ∈ V if f(v) ≤ lim infn→∞ f(vn) for any sequence {vn} such that vn ⇀ v. We also

make use of coercive and proper functions. A function f : V → R ∪ {∞} is said to be coercive if

lim‖x‖→∞ f(x) = ∞, and is proper if f 6= ∞. With these standard definitions, we are ready to prove

Theorem 3.2.

8
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Finite Element Method for the MPBE

Proof of Theorem 3.2. To prove existence of minimizer, we need to verify that M is a convex set,

and E is a convex, coercive and semi lower-continuous functional on M . To show convexity of M ,

we consider w = tu+(1− t)v for any u, v ∈ M and a scalar t such that 0 < t < 1. Since M ⊂ H1(Ω),

we have w ∈ H1(Ω) as H1(Ω) is a linear space. On the boundary, ∂Ω, we have

w = tu + (1− t)v = t(g − uc) + (1− t)(g − uc) = g − uc on ∂Ω,

and hence we conclude that w ∈ M . This shows that the set M is convex.

From the proof of Lemma 3.1, it follows that E(w) is Gâteaux differentiable with

DE(u)[v] = A(u, v) + (N(u), v) + 〈fc, v〉.

Thus from Theorem 7.2.3 in [29], E is weakly lower semi-continuous. Since E is a proper function,

i.e. E(0) 6= ∞, then Theorem 3.3.3 in [30] immediately implies that it is lower semi-continuous.

The convexity of E follows from the convexity of x2 and the convexity of r(t) = ln(1−ν+ν cosh(t))

as a function from R to R. The convexity of latter function is seen from

r′′(t) = ν
ν + (1− ν) cosh(t)
(1− ν + ν cosh(t))2

> 0,

since 0 < ν < 1. Thus E is strictly convex.

To show coercivity of E, we have by a generalization of the arithmetic-geometric mean inequality,

for any δ > 0

〈fc, v〉 ≤ εs‖∇uc‖Ωs‖∇v‖Ωs ≤
1
δ
‖∇uc‖2

Ωs
+ δε2s‖∇v‖2

Ωs
. (14)

Since cosh(t) ≥ 1, it follows that ln(1−ν +ν cosh(v +uc)) ≥ 0 and hence E(v) ≥ C(ε, δ)‖∇v‖2−
1
δ ‖∇uc‖2

Ωs
. By choosing δ sufficiently small, C(ε, δ) > 0 is satisfied. Then the Poincaré-Friedrich’s

inequality gives us

E(v) ≥ C(ε, δ)‖v‖2
1 + C(uc, g) (15)

which shows the coercivity of E. Finally, Theorem 3.3.4 in [30] shows the existence of the minimizer.

Since E is strictly convex, the minimizer is unique.

9
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4 Finite Element Discretization

With the theoretical framework of weak solutions presented in the previous section, we next consider

the implications on associated finite element discretizations. In particular, we show ellipticity of the

bilinear form, A( . , . ), and establish several properties on the functional N(u). From this we are

able to verify optimality through an a priori error estimate and demonstrate convergence in the

H1-norm.

This section illustrates the numerical robustness of the finite element method for the MPBE

relative to the unmodified equation. Convergence proofs for solutions of the unmodified PBE include

restrictive mesh conditions [15] which are generally not satisfied by standard meshing software

designed for the PBE, e.g. GAMer [31]. These conditions arise from the need for the discrete

solution to satisfy L∞ estimates. In this section, we show that the MPBE does not have the same

restrictions, as the nonlinearity is bounded. As a result, this yields a provably convergent method

for the MPBE using meshes generated by existing meshing software, without the need to satisfy the

discrete L∞ bounds. We also note that the linear systems arising from discretization of the MPBE

are better conditioned (compared to the PBE), which leads to a more efficient numerical method.

4.1 Analysis of the nonlinear finite element approximation

Consider uD that satisfies the Dirichlet boundary conditions in (8). We then solve for u0 ∈ H1
0 (Ω)

with u0 = u− uD. Correspondingly, we define V h to be the space of globally continuous piecewise

linear elements that satisfy Dirichlet boundary conditions. That is V h = {v ∈ H1(Ω), v|τ ∈ P1(τ),

v = g − uc on ∂Ω, ∀τ ∈ Th} where Th is the triangulation of Ω, and V h
0 = V h ∩H1

0 (Ω). From this,

we consider the finite element approximation based on (11) to be: Find uh ∈ V h such that

A(uh, vh) + (N(uh), vh) + 〈fc, vh〉 = 0, ∀vh ∈ V h
0 . (16)

Several results hold in this discrete setting as a direct consequence of the theory provided in the

previous sections. From Lemma 3.1, for example, we have that uh is the minimizer of E in V h. Also,

since V h is a convex and closed subset of H1(Ω), based on Theorem 3.2, existence and uniqueness

of the discrete solution follows as well.

For finite element approximations it is important to verify not only the existence of a unique

10
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Finite Element Method for the MPBE

solution, but also optimality of the solution. We present this result below in Theorem 4.2 and

follow in Theorem 4.3 by establishing convergence of the discrete solution as the mesh is refined.

Before proceeding, we recall several results in functional analysis that are instrumental in proving

our proposed theory.

The following lemma establishes important properties of bilinear form A( . , . ) and functional

N( . ), which are then used to show optimality of the discrete solution in Theorem 4.2. We choose to

present the statement of the lemma and theorem to coincide with the unmodified Poisson-Boltzmann

equation theory as in Lemma 6.1 and Theorem 6.2 in [15]. The relationship between the results

of the PBE and the MPBE in this context is important, but it is notable that our hypothesis and

assumptions differ from the existing PBE theory. As a result, the mechanics of our proofs are

different and the simplicity of our theory further highlights the accessibility and ease-of-use of a

modified form of the Poisson-Boltzmann equation.

Lemma 4.1 (Properties of A( . , . ) and N( . )).

(a) The bilinear form A(u, v) is coercive and bounded. That is

c ‖u‖2
1 ≤ A(u, u), and A(u, v) ≤ C ‖u‖1‖v‖1.

(b) The operator N satisfies the property

(N(u)−N(v), u− v) ≥ 0.

(c) The operator N is bounded in the sense that for u, v ∈ H1(Ω), w ∈ L2(Ω),

(N(u)−N(v), w) ≤ K‖u− v‖‖w‖.

Proof. The proof of (a) is standard.

To prove (b), consider the functional R(u) =
∫
Ω

κ̄ ln(1 − ν + ν cosh(u)). From the proof of

Theorem 3.2, we have that R is a convex and Gâteaux differentiable with DR(u)[v] =
∫
Ω

N(u)v =

(N(u), v). Using the convexity and differentiability of R [32, Theorem 5.3.17],

(DR(u)−DR(v))[u− v] = (N(u)−N(v), u− v) ≥ 0.

11
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Chaudhry, Bond, Olson

To show (c), we use the Cauchy-Schwarz inequality,

(N(u)−N(v), w) ≤ ‖N(u)−N(v)‖‖w‖.

Now consider n(t) = κ̄2
s

sinh(t)
1−ν+ν cosh(t) as a function from R to R. Then,

n′(t) = κ̄2
s

ν + (1− ν) cosh(t)
(1− ν + ν cosh(t))2

= κ̄2
s

ν sech(t) + 1− ν

cosh(t)(sech(t)− ν sech(t) + ν)2

≤ κ̄2
s

(sech(t)− ν sech(t) + ν)2
≤ κ̄2

s

ν2
= K.

Then for any v ∈ L2(Ω) we have

‖DN(v)‖ = sup
w∈L2(Ω)

‖DN(v)[w]‖L2(Ω)

‖w‖L2(Ω)
≤ sup

w∈L2(Ω)

√∫
Ω
(n′(v)w)2

‖w‖L2(Ω)
≤ sup

w∈L2(Ω)

K
‖w‖L2(Ω)

‖w‖L2(Ω)
= K.

Finally, from the generalized Mean-Value Theorem for Gâteaux differentiable functions [32, Propo-

sition 5.3.11], we have

‖N(u)−N(v)‖ ≤ K‖u− v‖,

which shows (c).

With these properties on bilinear form A( . , . ) and functional N( . ), one can show that the

discrete solution is quasi-optimal in the H1-norm. This result resembles Céa’s lemma, which shows

quasi-optimality of discrete solutions for bilinear forms.

Theorem 4.2 (Quasi-optimal a priori error estimate). Let u and uh be the solution of RMPBE and

its finite element approximation, respectively. Then the finite element solution uh is quasi optimal,

i.e.

‖u− uh‖1 ≤ C inf
vh∈V h

‖u− vh‖1. (17)

Proof. The proof directly follows the proof of [15, Theorem 6.2].

From this a priori estimate we are now able to relate the error to a given mesh in the following

convergence result.

12
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Finite Element Method for the MPBE

Theorem 4.3 (Convergence in norm of the discrete solution). Let u ∈ H1(Ω) be the weak solution

of RMPBE and uh be the finite element approximation. Further we assume the following,

• The interface Γ is polygonal and is exactly represented by the faces of simplices in Th.

• The maximum diameter of the elements in the mesh, h, goes to 0.

• The family of triangulations Th is shape regular.

Then there exists a constant C independent of h such that

‖u− uh‖1,Ω ≤ Ch

(∑
τ∈Th

|u|2,τ

)1/2

and hence

lim
h→0

‖u− uh‖1 = 0.

Proof. Because of our assumption on the interface Γ, ε and κ̄ are piecewise constants on each element

τ ∈ Th. If τ ⊂ Ωm, then for v ∈ H1
0 (τ) we extend it by 0 outside τ to ṽ so that ṽ ∈ H1

0 (Ω). By

definition of the weak solution we have,

(ε∇u,∇ṽ)Ω = 0,

εm(∇u,∇v)τ = 0 ∀v ∈ H1
0 (τ).

A regularity result of elliptic partial differential equations [33] says that u ∈ H2(τ) for any

τ ⊂ Ωm. Similarly, since N(u) ∈ L2(Ω) we have u ∈ H2(τ) for any τ ⊂ Ωs. Letting Ihu ∈ V h be the

finite element interpolant of u, our quasi-optimal result (17) and standard approximation theory [34]

results in

‖u− uh‖2
1 ≤ C‖u− Ihu‖2

1 = C
∑
τ∈Th

‖u− Ihu‖2
1,τ ≤ Ch2

∑
τ∈Th

|u|22,τ ,

which completes the proof.

4.2 Nonlinear solve

The previous sections establish important results regarding the weak form of the nonlinear problem.

In this section we examine the linearized modified Poisson-Boltzmann equation. We begin by defining

13
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Chaudhry, Bond, Olson

the functional F ( · ) by

〈F (u), v〉 = (ε∇u,∇v) + (κ̄2 sinh(u + uc)
1− ν + ν cosh(u + uc)

, v) + ((ε− εm)∇uc · ∇v). (18)

Using F , the nonlinear weak problem given in (11) can be restated as: Find u ∈ H1(Ω) such that

〈F (u), v〉 = 0 ∀v ∈ H1
0 (Ω). (19)

Newton linearization

To solve the nonlinear equation in (19), we apply Newton’s method, which uses the linearization of

the nonlinear form 〈F (u), v〉. Thus, for the MPBE, the bilinear form 〈DF (u)[w], v〉 is given by

〈DF (u)[w], v〉 = (ε∇w,∇v) + (κ̄2 ν + (1− ν) cosh(u + uc)
(ν cosh(u + uc)− ν + 1)2

w, v). (20)

Newton’s method with damping (γ ∈ [0, 1]) solves for the unknown u, which can be summarized by

Input : u ∈ H1(Ω)
while not converged

Find w ∈ H1
0 (Ω) so that 〈DF (u)[w], v〉 = −〈F (u), v〉, ∀v ∈ H1

0 (Ω) .
u← u + γw

end while

For the discrete problem, the spaces H1(Ω) and H1
0 (Ω) are replaced by V h and V h

0 respectively.

Convergence criteria for a damped Newton’s method may be |〈F (uh), vh〉| < TOL for all vh or

‖ui+1
h −ui

h‖ < TOL, where TOL is some user specified tolerance and ui
h and ui+1

h are approximations

to the solution from successive iterations of the algorithm. In our experiments we found that

convergence of the damped Newton iterates was insensitive to the method of selecting γ.

The Newton iteration above requires an initial approximation to the solution and convergence

is dependent on this selection. Moreover, an accurate initial approximation leads to improved

performance. For our approach, we use the solution of a linearized PBE, where the linearized PBE

arises from linearizing the nonlinear term in either the PBE or MPBE. For example, near ũ = 0,

the linearized PBE or MPBE is

−∇ · (ε(x)∇ũ(x)) + κ̄2(x)ũ(x) = 4πβec

Nm∑
i=1

Qiδ(x− xi).

14
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Finite Element Method for the MPBE

This equation is then regularized as described for the nonlinear the MPBE and solved using the

finite element method.

Convergence rate of the discrete solution

Theorem 4.3 states that the expected rate of convergence for discrete solution is O(h) for the H1

norm. For second order elliptic problems with continuous coefficients, one can often prove that the

convergence rate for the L2 norm is O(h2). We are unable to show this rate for the L2 norm for the

MPBE because the coefficients ε and κ are discontinuous. However we show O(h2) convergence in L2

norm experimentally, and also verify the claim of O(h) convergence for the H1 norm by examining

the convergence of our finite-element scheme for the Born ion.

The domain for the Born ion consists of a spherical solute of radius R with a single point charge

Q1 at its center [35]. The solute is surrounded by a solvent, with the solvent domain truncated at

a finite spherical radius, as depicted in Figure 3a. Analytical solutions for the MPBE do not exist.

+
Q1

R

Ωm

Ωs

(a) Born Ion (b) Methanol

Figure 3: Models used in the numerical experiments

To obtain a “true” solution, we exploit the spherical symmetry in the Born ion, and recast (8) in

spherical coordinates,

− 1
r2

d

dr

(
r2ε

du

dr

)
+ κ̄2 sinh(u + uc)

1− ν + ν cosh(u + uc)
=

1
r2

d

dr

(
r2(ε− εm)

duc

dr

)
.

We solve this one-dimensional equation using a finite volume method on a fine mesh, and consider

15
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Chaudhry, Bond, Olson

the resulting solution to be the “true” solution.

One advantage of the modified form of the Poisson-Boltzmann equation that we pursue is the nat-

ural fit into existing PBE finite element software. We employ the finite element package FETK [36]

which is frequently used for PBE computation. The finite element approximation benefits from an

accurate meshing of the subdomains and we use a three-dimensional tetrahedral mesh generated us-

ing Geometry-preserving Adaptive Mesher (GAMer) [31]. In our convergence results, we normalize

the mesh parameter, h, by its value for the coarsest mesh, hmax. Note that the L2 and H1 errors

are absolute errors, and depend on the size of the domain and choice of units.

As an example, we consider a = 1, εm = 1, εs = 78, ionic-strength of 0.1M , and temperature of

300K. Table I summarizes the convergence rate of the FEM solution for the MPBE and the results

indicate that convergence is approaching optimality.

h/hmax L2 Error L2 Convergence rate H1 Error H1 Convergence rate

1 247.8 — 442.9 —
1/2 75.6 1.7 201.4 1.1
1/4 22.0 1.8 96.5 1.1
1/8 5.7 2.0 47.1 1.0

Table I: L2 convergence of u

Conditioning of linear systems in Newton’s iteration

The dominant cost in each iteration of Newton’s method is the solution of the linear problem, which

in this case results in a large, sparse linear system. Consequently we examine bounds on condition

numbers from systems arising from unmodified PBE and MPBE to quantify the computational effort

needed at each Newton iteration.

For simplicity, initially we consider homogeneous physical parameters ε = κ̄s = 1. Since ε and

κ̄ are common to each equation, the dependence on them in the following discussion of condition

numbers is the same.

The condition number of a linear system at a particular Newton iteration depends on the coerciv-

ity and continuity constants of the bilinear forms 〈DF (u)[w], v〉 and 〈DF̃ (u)[w], v〉, which correspond

to the MPBE and PBE respectively. From the Poincaré-Friedrich’s inequality and the fact that hy-

16
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perbolic cosine is a positive function, the coercivity bounds for PBE are

〈DF̃ (u)[w], w〉 = (∇w,∇w) + (κ̄2 cosh(u + uc)w,w) ≥ (∇w,∇w) ≥ C‖w‖2
1.

Furthermore, for boundedness we use the Cauchy-Schwarz inequality,

〈DF̃ (u)[w], w〉 ≤ max
x∈Ωs

cosh(u(x) + uc)[(∇w,∇v) + (w, v)] ≤ max
x∈Ωs

cosh(u(x) + uc)‖w‖1‖v‖1.

For the MPBE, the coercivity bound follows similarly to the PBE case since ν+(1−ν) cosh(x)
(ν cosh(x)+1−ν)2 ≥ 0.

For boundedness, we note that ν+(1−ν) cosh(x)
(ν cosh(x)+1−ν)2 ≤ 1 < 1

ν2 to get,

〈DF (u)[w], w〉 ≤ 1
ν2
‖w‖2

1.

From these bounds, we argue that the condition number for the PBE could be as large as

O(cosh(u)), while for the MPBE it is O(1/ν2). Since cosh(u) depends exponentially on u, the

conditioning for the PBE is likely to be considerably worse than for the MPBE if u is large. Table II

gives the condition numbers (estimated to high accuracy using Lanczos iteration) of the linear

systems for the first three iterations of Newton’s method for the Born ion, which provides numerical

evidence for the above hypothesis. For the MPBE, ν corresponding to ionic radius of a = 1 was

used.

Newton Iteration PBE MPBE

1 3.21e+08 1.76e+04
2 1.18e+08 1.75e+04
3 4.34e+07 1.75e+04

Table II: Comparison of condition numbers for the Born ion

Next we examine the ν-dependence of the condition number of the linear systems arising in the

MPBE. Table III shows the variation in condition number as the parameter ν is changed in the

MPBE for the Born ion. Specifically, the table shows the condition numbers of matrices for the first

iteration of Newton’s method. The results indicate that as ν goes to 0, the conditioning of the linear

systems in the Newton iteration deteriorates. Since the O(1/ν2) bound on the condition number

was derived from coercivity and continuity bounds and since the bounds are not tight, there is not

a sharp agreement with the condition numbers seen in practice.
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ν Condition Number

1.2e-01 1.79e+04
1.2e-04 1.76e+04
1.2e-07 1.35e+06
1.2e-10 4.34e+08

0 3.21e+08

Table III: Condition numbers for varying ν

εs/εm Condition Number

1 19.2e+03
10 9.3e+03

100 22.4e+03
1000 21.9e+04

10000 21.8e+05

Table IV: Condition numbers for varying εs/εm

The condition number for ν = 0 corresponds to the unmodified PBE, for which we have already

seen that the condition number is bounded by O(cosh(u)). This explains why the condition number

does not increase as O(1/ν2), but stays bounded as ν is decreased.

Finally we examine the dependence of the condition number as the parameters ε and κ̄s are

varied. Table IV and V show the variation in condition numbers for the first iteration of Newton’s

method. We observe only a small change in the condition number as κ̄s is increased by four orders

of magnitude, which is expected since κ̄ effects the mass matrix part of the full assembled matrix.

On the other hand, condition number is more sensitive to the jump εs/εm and varies linearly as

expected.

κ̄s Condition Number

0 1.78e+04
0.1 1.73e+04
1 1.77e+04

10 2.01e+04
100 7.56e+04

Table V: Condition numbers for varying κ̄s
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5 Solution to the Nonlinear PBE using the MPBE

The modified form of the PBE that we consider in this paper is motivated from physics and results

in a tractable model from a theoretical point-of-view. In addition to the advantageous numerical

properties, such as optimal accuracy and improved conditioning, the MPBE is also a useful tool

when considering the unmodified PBE. Indeed, the finite element approach to the MPBE fits well

into an existing finite element computational framework for the PBE. Even more, as we motivate in

this section, it is also a valuable approach for generating an initial guess for the unmodified PBE.

As the ion size goes to 0 in the MPBE, we recover the PBE. Yet, for a finite-size with ν > 0, the

nonlinearity in the MPBE is numerically evaluated more effectively. To see this, consider the forms

〈F̃ (u), (v)〉 and its linearization 〈DF̃ (u)[w], v〉 for the PBE

〈F̃ (u), (v)〉 = (ε∇u,∇v) + (κ̄2 sinh(u + uc), v) + ((ε− εm)∇uc · ∇v), (21)

〈DF̃ (u)[w], v〉 = (ε∇w,∇v) + (κ̄2 cosh(u + uc)w, v) + ((ε− εm)∇uc · ∇v).

In particular, each step of a Newton iteration requires evaluation of cosh(u + uc) and sinh(u + uc).

If the initial approximation is not close to the solution, then these hyperbolic quantities may be

large, leading to overflow. One method of avoiding this issue is by capping the input [37]. However,

even with truncation the resulting solution process may be complex. We propose using the MPBE

as an initial guess in Newton’s method to solve the unmodified PBE and we investigate this in the

remainder of the paper.

To highlight the differences with the MPBE, we consider the nature of the nonlinearities. The

nonlinearities in 〈F (u), v〉 and 〈DF (u)[v], w〉 for the MPBE (see (18) and (20)) are N(u + uc) and

N ′(u + uc), which are bounded by κ̄2
s/ν and κ̄2

s/ν2 respectively. Moreover if the input to hyperbolic

functions are large, the nonlinearities in MPBE go to 0.

Thus, if a solution to the unmodified PBE is desired — without taking into account steric ef-

fects — using the MPBE solution provides a physically accurate and computationally tractable

initial approximation. For example, choosing a small ion size so that 1/ν2 is modest in size may

provide a reasonable initial approximation for the PBE. This hypothesis is experimentally verified

for the Born ion and for methanol (see Figure 3). The parameters and subdomains for methanol

were obtained from the APBS software package and meshed using GAMer [31].
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For a comparison, we consider solving the nonlinear PBE with either a linear approximation of

the PBE (labeled PBE in Table VI) or with the nonlinear MPBE (labeled MPBE in Table VI). In

the case where the MPBE is used to form an initial approximation to the PBE, we report the sum

of the Newton iterations from solving both the PBE and MPBE. An ion size of 10−1 is used in the

MPBE, but other sizes are also effective. In both ion configurations, using the MPBE accelerates

convergence of the nonlinear PBE. The improvement is more pronounced for methanol, which is

particularly difficult to solve without using the MPBE to generate the initial guess. In the case of

the Born ion, the linear approximation provides an adequate initial approximation, which unlike

methanol, has a more uniform and basic geometry. Here we see that using the MPBE may provide

a significant improvement in the convergence of the Newton iteration.

Ion Initialize with linear PBE Initialize with MPBE

Born 17 14
Methanol 121 21

Table VI: Comparison of Newton iterations for solving the PBE

Remark 5.1. As noted earlier, convergence of Newton’s method is highly dependent on choosing a

suitable initial approximation. One way to generate this is to use homotopy continuation methods

[38]. A homotopy H(x, t) between two functions f(x) and g(x) from a space topological space X

to another space Y is a continuous function from X × [0, 1] such H(x, 0) = f(x) and H(x, 1) =

g(x) for all x ∈ X, see Figure 4. If we want to find zeros of g using Newton’s method, then in

homotopy continuation methods the function f is chosen so that it is easy to solve for t = 0, and

as the parameter t varies from 0 to 1, the initial guess for H(·, tn) is generated from the solution

of H(·, tn−1). Homotopy methods aim to accelerate the solution of the target problem (t = 1) by

solving a sequence of modified problems, as t increases from 0 to 1.

For solving the PBE, we designate g(·) to be the nonlinear function corresponding to the FEM

formulation of PBE in (21). The function f(·) is defined as the nonlinear function corresponding to

the MPBE in (18). Varying t from 0 to 1 then corresponds to varying ν in MPBE from some small

initial value to 0. This is equivalent to solving MPBE with decreasing ion size in successive nonlinear

solves until the ion size is 0, at which point we solve the PBE. In our numerical experiments we use

only one partition of the homotopy map, but for more difficult problems, more homotopy resolution

may be necessary.
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1.25

1.3

t = 0

t = 1
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Figure 4: Homotopy between two functions

6 Conclusion

In this paper we have considered finite element approximations to a modified form of the Poisson-

Boltzmann equation. The modified equation is important as it accounts for the steric or finite-

size effects of ion interactions in a molecular simulation. Previously, modeling and computation

efforts using this equation have been considered, but in this paper we established several important

theoretical results regarding the modified Poisson-Boltzmann equation and related the modified form

to the standard form. In particular, we established existence and uniqueness of a weak solution to

the problem thereby enabling a finite element formulation. To this end, we also showed convergence

and optimal mesh dependence of a finite element approximation to the problem. As a practical

consideration we examined the relationship between the conditioning and the standard Poisson-

Boltzmann equation, showing that the conditioning is improved for the modified form and that the

relationship is dependent on the ion size in a consistent manner. We also discussed the numerical

evaluation of the modified equation, showing that numerical artifacts of evaluation in the standard

form are not present in the modified form. Finally, we discussed the use of the modified equation to

assist in the iteratative solution of the nonlinear Poisson-Boltzmann equation, ultimately reducing

the total number of linear solves and total time to solution.
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